Monoamine transporters (MATs) regulate neurotransmission via the reuptake of dopamine, serotonin and norepinephrine from extra-neuronal regions and thus maintain neurotransmitter homeostasis. As targets of a wide range of compounds, including antidepressants, substances of abuse and drugs for neuropsychiatric and neurodegenerative disorders, their mechanism of action and their modulation by small molecules have long been of broad interest. Recent advances in the structural characterization of dopamine and serotonin transporters have opened the way for structure-based modeling and simulations, which, together with experimental data, now provide mechanistic understanding of their transport function and interactions. Here we review recent progress in the elucidation of the structural dynamics of MATs and their conformational landscape and transitions, as well as allosteric regulation mechanisms.
Cheng MH & Bahar I. (2019) Monoamine transporters: structure, intrinsic dynamics and allosteric regulation, Nature Structural & Molecular Biology | VOL 26 | JULY 2019 | 545–556